Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
TRISH (Tree-Ring Integrated System for Hydrology), a new web-based tool for reconstruction of water-balance variables from tree-ring proxies is described. The tool makes use of a mapping application, a global water balance model and R-based reconstruction software. Long time series of water balance variables can be reconstructed by regression or analog statistical methods from tree-ring data uploaded by the user or available in TRISH as previously uploaded public datasets. A predictand hydroclimatic time series averaged or summed over a river basin or arbitrary polygon can be generated interactively by clicking on the map. Control over reconstruction modeling includes optional lagging of predictors, transformation of predictand, and reduction of predictors by principal component analysis. Output includes displayed and downloadable graphics, statistics, and time series. The two-stage reconstruction approach in TRISH allows assessment of the strength of the hydroclimatic signal in individual chronologies in addition to providing a reconstruction based on the tree-ring network. TRISH facilitates the testing of sensitivity of reconstructions to modeling choices and allows a user to explore hydrologic reconstruction in ungauged basins. The R software for reconstruction is available for running offline in the RStudio development environment. TRISH is an open-science resource designed to be shared broadly across the Earth Science research community and to engage water resource management.more » « lessFree, publicly-accessible full text available August 1, 2026
-
The year-to-year variability of precipitation has significant consequences for water management and forest health. “Whiplash” describes an extreme mode of this variability in which hydroclimate switches abruptly between wet and dry conditions. In this study, a pool of total-ring-width indices from five conifer species (Abies magnifica, Juniperus grandis, Pinus ponderosa, Pinus jeffreyi, and Tsuga mertensiana) in the Sierra Nevada is used to develop reconstructions of water-year precipitation using stepwise linear regression on lagged chronologies, and the reconstructions are analyzed for their ability to track whiplash events. A nonparametric approach is introduced to statistically classify positive and negative events, and the success of matching observed events with the reconstructions is evaluated using a hypergeometric test. Results suggest that reconstructions can effectively track whiplash events, but that tracking ability differs among species and sites. Although negative (dry-to-wet) events (1921–1989) are generally tracked more consistently than positive events, Tsuga stands out for strong tracking of positive events. Tracking ability shows no clear relationship to variance explained by reconstructions, suggesting that efforts to extend whiplash records with tree-ring data should consider optimizing reconstruction models for the whiplash signal.more » « less
-
Abstract Key MessageWood fiber cell wall thickness best characterizes white bands found at the end of certain growth rings inSalix alba.Evidence suggests these features are related to late-season hydrology. AbstractRecent, record-breaking discharge in the Yenisei River, Siberia, is part of a larger trend of increasing river flow in the Arctic driven by Arctic Amplification. These changes in magnitude and timing of discharge can lead to increased risk of extreme flood events, with implications for infrastructure, ecosystems, and climate. To better understand the effect of these changes on riparian tree growth along the lower reaches of the Yenisei River, we collected white willow (Salix alba) cross sections from a fluvial fill flat terrace that occasionally floods when water levels are extremely high. These samples displayed bands of lighter colored wood at the end of certain annual growth rings that we hypothesized were related to flood events. To identify the characteristics and causes of these features, we use an approach known as quantitative wood anatomy (QWA) to measure variation in fiber cell dimensions across tree rings, particularly fiber lumen area (LA) and cell wall thickness (CWT). We investigate (1) which cell parameters and method to extract intra-annual data from annual tree rings best capture terminal white bands identified inSalix, and (2) if these patterns are related to flood magnitude and/or duration. We find that fiber CWT best captures terminal white bands found inSalixrings. Time series derived from CWT measurements correlate with July water-level durations, but at levels too low to be labeled flooding. Although both terminal white bands and July flooding have reduced since 1980, questions remain as to the cause of terminal white bands. Understanding how riparian vegetation responds to changes in hydrology can help us better manage riparian ecosystems and understand the impacts of a changing Arctic hydrological regime.more » « less
-
Proxy records from the late Quaternary help in understanding climate variability on extended time scales. An ancient landslide deposit in Oregon U.S.A. preserved large logs from Douglas fir trees (Pseudotsuga menziesii (Mirb.) Franco) and afforded an opportunity to explore the response of tree growth to climate on annual and decadal scales. High-precision radiocarbon dating indicates an age exceeding 63 ka, i.e., the trees grew within the generally cool Marine Isotope Stage 5 (MIS 5), likely during a warmer interval optimal for Douglas fir establishment. This would include the prolonged warm MIS 5e (ca. 110–130 ka), corresponding approximately to the Eemian interglacial, which was warm like the current Holocene interglacial. A 297-year tree-ring width chronology from 12 Douglas fir logs and 227-year tree-ring δ13C and δ18O records are analyzed with spectral and wavelet analysis. Variance of the ancient rings is consistent with modern Douglas fir growth sensitive to moisture and ecological disturbances. Spectra of ancient and modern chronologies are dominated by low frequencies with significant spectral peaks appearing at high frequencies (2.1–4 years) and cyclic behavior transient over centuries. It is conceivable that the O-isotopes track moisture and that C-isotopes track temperature or sunlight. The findings illustrate the challenges in assessing the response of ancient tree-ring properties to late Quaternary climate variability.more » « less
-
Dendroclimatology has focused mainly on the tree growth response to atmospheric variables. However, the roots of trees directly sense the “underground climate,” which can be expected to be no less important to tree growth. Data from two meteorological stations approximately 140 km apart in southern Siberia were applied to characterize the spatiotemporal dynamics of soil temperature and the statistical relationships of soil temperature to the aboveground climate and tree-ring width (TRW) chronologies of Larix sibirica Ledeb. from three forest–steppe stands. Correlation analysis revealed a depth-dependent delay in the maximum correlation of TRW with soil temperature. Temperatures of both the air and soil (depths 20–80 cm) were shown to have strong and temporally stable correlations between stations. The maximum air temperature is inferred to have the most substantial impact during July–September (R = −0.46–−0.64) and early winter (R = 0.39–0.52). Tree-ring indices reached a maximum correlation with soil temperature at a depth of 40 cm (R = −0.49–−0.59 at 40 cm) during April–August. High correlations are favored by similar soil characteristics at meteorological stations and tree-ring sites. Cluster analysis of climate correlations for individual trees based on the K-means revealed groupings of trees driven by microsite conditions, competition, and age. The results support a possible advantage of soil temperature over air temperature for dendroclimatic analysis of larch growth in semiarid conditions during specific seasons.more » « less
-
Abstract The Yenisei River is the largest contributor of freshwater and energy fluxes among all rivers draining to the Arctic Ocean. Modeling long-term variability of Eurasian runoff to the Arctic Ocean is complicated by the considerable variability of river discharge in time and space, and the monitoring constraints imposed by a sparse gauged-flow network and paucity of satellite data. We quantify tree growth response to river discharge at the upper reaches of the Yenisei River in Tuva, South Siberia. Two regression models built from eight tree-ring width chronologies of Larix sibirica are applied to reconstruct winter (Nov–Apr) discharge for the period 1784–1997 (214 years), and annual (Oct–Sept) discharge for the period 1701–2000 (300 years). The Nov–Apr model explains 52% of the discharge variance whereas Oct–Sept explains 26% for the calibration intervals 1927–1997 and 1927–2000, respectively. This new hydrological archive doubles the length of the instrumental discharge record at the Kyzyl gauge and resets the temporal background of discharge variability back to 1784. The reconstruction finds a remarkable 80% upsurge in winter flow over the last 25 years, which is unprecedented in the last 214 years. In contrast, annual discharge fluctuated normally for this system, with only a 7% increase over the last 25 years. Water balance modeling with CRU data manifests a significant discrepancy between decadal variability of the gauged flow and climate data after 1960. We discuss the impact on the baseflow rate change of both the accelerating permafrost warming in the discontinuous zone of South Siberia and widespread forest fires. The winter discharge accounts for only one third of the annual flow, yet the persistent 25 year upsurge is alarming. This trend is likely caused by Arctic Amplification, which can be further magnified by increased winter flow delivering significantly more fresh water to the Kara Sea during the cold season.more » « less
-
Abstract Tree rings have been central to the understanding of variability of flow of the Colorado River. Spurred by steadily declining flows after the 1920s, early tree‐ring research drew attention to the importance of climate variability to water supply by identifying episodes in the past that were even drier. Application of modern statistical methods to tree‐ring data later yielded a reconstruction of annual flows at Lees Ferry back to the early 1500s that highlighted the unprecedented wetness of the base period for the 1922 Colorado River Compact. That reconstruction served as the framework for a collection of papers in a 1995 special issue ofWater Resources Bulletinon coping with severe sustained drought on the Colorado River. This retrospective paper reviews historical aspects of the dendrohydrology of the Colorado River, and the updates since 1995. A constantly expanding tree‐ring network has been subjected to an array of new statistical approaches to reconstruction. Climate change and increasing demand for water have meanwhile driven increased interest in the processing and presentation of reconstructions for optimal use in water resources planning and management. While highlighting the robustness of main findings of earlier studies, recent research yields improved estimates of magnitudes of flow anomalies, extends annual flows to more than 1200 years, and underscores unmatched drought duration in the medieval period.more » « less
An official website of the United States government
